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Summary 
The mathematical model of convective-conductive heat transfer in a continuous billet was developed to simulate 
the temperature distribution and the boundary position of phase changes in the ingot during the casting process. 
The model takes into account the temperature dependence of metal's thermal properties and the heat transfer with 
moving metal. The heat transfer in an ingot and the heat exchange inside the walls of the mold are described by 
nonlinear unsteady partial differential equations. The boundary conditions assigned for the part of the ingot inside 
the mold correspond to the nature of heat transfer under the slag during casting. Also they reflect the fact that a 
gap filled partially with encrusted slag and partially with gas located between the ingot surface and the wall of the 
mold. The unknown boundary between liquid and solid phases is considered as a mushy zone given by the 
condition of temperature equality and the Stefan condition. A finite-difference method was used to numerical solve 
the problem. The analysis of the qualitative behaviour of the mushy zone was held. The results of calculations of 
the influence of variations of the casting speed, secondary cooling water rate and thermal parameters on the depth 
and shape of the mushy zone are received. These results can be used in the future to assess the adequacy of the 
mathematical model of temperature field of continuous casting ingot and to develop an automatic control system of 
casting machine. 
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Introduction 
It is well known that the properties of continuous 
casting (CC) production are highly dependent on 
temperature dynamics during the casting process. 
The control of the CC process based on strand 
temperature distribution is a complex problem and 
cannot be achieved without proper knowledge of heat 
and mass transfer and solidification dynamics. 
Conducting of industrial trials is too expensive. 
Development of computer technology has made 
computer experiments the main tool of metallurgical 
processes investigation. 
Computer simulation based on various mathematical 
models. For designing continuous casting machines 
(CCM), building automatic control systems (ACS), 
and developing new casting technologies — and in 
turn for developing a mathematical model to 
adequately achieve these three goals, it is necessary 
to study how one of the casting parameters affects 
others. So we have to choose or to develop a model 
which takes into account certain conditions. 
For instance, if we want to increase the productivity 
of CCM, we need to increase the casting speed. This 
raises the problem of determining of the metallurgical 
length. In other words, we need to know at what 
distance from meniscus crystallization is fully 
completed. 
In this paper the mathematical model of temperature 
field and mushy zone position of continuous ingot is 
presented. For its numerical solution the finite-
differences method is used. The results of 

calculations of the influence of variations of the 
casting speed, secondary cooling water rate and 
thermal parameters on the depth and shape of the 
mushy zone are received and also presented here. 
 
State of the Art 
One of the simplest methods of the phase-change 
position determination is the engineering method of 
the square root [1], which in some cases gives a 
sufficiently close to the reality of the data. 
Nevertheless, it cannot be always considered as 
enough reliable. So the next step in improvement  of 
mathematical model of continuous ingot 
crystallization is the consideration of Stefan condition. 
In [2], the classical and the generalized formulation of 
Stefan problem are given, as well as the basic 
mathematical results on the existence and unique-
ness of analytical solutions are presented. The 
numerical solution of this problem was a purpose of 
the work a lot of researchers. Many authors use the 
so-called method of spreading [3], which consists in 
the introduction of the Dirac delta function with the 
aim of defining the heat transfer inside a continuous 
medium. 
Then the Dirac delta function is replaced of a simple 
approximation. At the same time the thermal physical 
characteristics also are replaced of some effective 
values. 
But recent researches showed that in reality there is 
not so called jump of the thermal physical parameters 
at the phase-change boundary. 
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Actually to deal with the high variability of the 
described problem the heat and mass phenomenon 
must also be taken into account, and therefore the 
employed numerical model has to cover all the phase 
and structural changes [4]. A temperature field of 
steel slab in continuous casting process must be 
described as a heat transfer problem involving 
solidification. The phase trans-formation 
phenomenon is dominant in such technological 
process. 
In [5] the 2-D mathematical model examines the two-
dimensional temperature field and the phase 
boundary in a longitudinal section of a wide slab. In 
[6] the similar 3-D mathematical model is proposed. 
Both of the models account for the complex geometry 
of the secondary cooling zone (SCZ), the location of 
the nozzles in the SCZ, the dependence of heat 
transfer on water discharge in the nozzles, and the 
dependence of the thermophysical parameters on the 
temperature of the metal. But both of them don’t 
consider the mushy zone between solid and liquid 
phases. 
In [7] heat transfer in an ingot in pulling it through the 
crystallizer in the process of continuous casting of 
steel is modeled by two different methods: in the 
classical formulation of the Stefan problem and on 
condition that a two-phase buffer zone exists 
between the liquid core of the ingot and its solid shell. 
A comparison of the obtained results is made using a 
standard slab crystallizer as an example. 
In this paper another approach to simulate the 
liquidus and solidus behavior is considered. 
 
The Mathematical Model 
Mathematical model of convective-conductive heat 
transfer in a continuous billet based on the 
mathematical model proposed in [6]. It accounts for 
the dependence of the thermophysical characteristics 
of metal on temperature. That’s why convective-
conductive heat transfer in an ingot and heat 
exchange inside the walls of the mold are described 
by nonlinear unsteady partial differential equations. 
The boundary conditions assigned for the part of the 
ingot inside the mold correspond to the nature of heat 
transfer under the slag during casting. Also they 
reflect the fact that a gap filled partly with encrusted 
slag and partly with gas is located between the ingot 
surface and the wall of the mold. The coordinate 
system is tied to the continuous caster (Fig. 1) and 
has its origin at the level of the meniscus. The 
equation of convective-conductive heat transfer 
inside the ingot is  
 
 
 
 
 
 
 

where τis time; T = T (τ; x; y; z) is temperature; v(τ) 
is the speed of the ingot; c(T) is heat capacity; ρ(T) is 
density; and α(T) is the thermal conductivity of the 
metal being cast. 
Unknown boundary position between liquid phase 
and mushy zone x = l(z) is determined from the 
temperature-equality condition and the Stefan 
condition 
 

                                         , 
 
 
 
             . 
 
 
where n is a normal to the phase boundary; lµ  is the 
latent heat of partially crystallization; lT  is the 
liquidus temperature; )( ll Tρρ = ; and l  is the liquid 
phase – mushy zone boundary. 
And boundary position between mushy zone and 
solid phase x = s(z) is determined from the 
analogous conditions 
 
     , 
 
 
 
             , 
 

Figure 1: The coordinate system in the area 
modeled  
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where µ  is the latent heat of crystallization;      is the 
solidus temperature;                     ;  and s  is the 
mushy zone – solid phase boundary. 
The boundary conditions in the SCZ account for the 
complex heat transfer mechanism resulting from 
convection and radiation: 
 
 
 
 

       ,
  
 
  

 
 

       ,
  

where )(τmG , mC , and mAT  are respectively the 
water discharge, the corrected value of the radiation 
coefficient on the surface of the ingot, and the 
ambient temperature in the m-th section of the SCZ; l 
is half the thickness of the ingot: x= d is a point on 
the surface of the ingot; and )),(( zGm τα  is the 
heat-transfer coefficient on the surface of the ingot. 
We assigned initial conditions for the temperature 
field and the position of the phase boundary. The 
nonlinear boundary-value problem is solved by the 
finite-differences method. Unknown boundary 
position was calculated by the method described in 
[8]. 
The proposed mathematical model has been adapted 
to the conditions which actually exist during the 
casting process on the machine No2 of Yenakiieve 
Iron and Steel Works Metinvest Holding (EMZ). 
Algorithms were described in [9] for adjusting the 
parameters of the model in accordance with incoming 
real-time information obtained on ingot surface 
temperature from measuring instruments.  
The model makes it possible to observe the 
dynamics of the ingot solidification process while 
varying the input parameters. The output information 
of the model consists of the temperature of the metal 
and the position of the mushy zone boundaries in a 
longitudinal section of the slab at any chosen 
moment of time. Also, this information can be used to 
calculate temperature gradients, heat removal, and 
the average temperature of the ingot surface at the 
centre of its broad face in different cross sections. 
The basic regime is: 0.2 m thickness of the slab, an 
ingot withdrawal speed of 3.5 m/min. Thermal 
physical parameters for steel the chemical 
composition is presented in Table 1, the temperature 
of the incoming melt to 1550°C. Mold and 
secondary cooling modes correspond to the 
technological instructions. The results of phase-
change position calculation are presented on Fig.2. 

 
 

Table 1. Steel the chemical composition 

C 0,36…0,44 

Si 0,17…0,37 

Mn 0,5…0,8 

Ni < 0,3 

S < 0,035 

P < 0,035 

Cr 0,8…1,1 

Cu < 0,3 

 
 
 
Mushy zone depending on casting speed 
During casting process it is recommended to 
maintain an ingot withdrawal speed at a certain 
technologically specified level. However, for technical 
reasons, the speed can be varied. For instance it is 
needed to reduce the normative speed for a short 
time for the necessary technological operations 
(replacing the submerged entry nozzle, etc.). When 
casting speed changes the depth of the liquid pool 
changes too. Nowadays researchers made attempts 
to develop algorithms for control the depth of the 
liquid phase by adjusting the water flow rates in the 
secondary cooling zone [4]. To solve this problem it is 
need to know how much the casting speed effects on 
the form of solidus phase-change boundary, and how 
much the secondary cooling modes effect on it. 
Fig. 3 is a graph showing the position of the mushy 
zone at different speeds of the ingot withdrawal. The 
greatest response observed in the point of final 
solidification, i.e. depth of the liquid phase depends 
significantly on the ingot withdrawal speed. 

 
 
 
 
 
Since for the productivity increasing the information 
about solidus position is more important, we will pay 

sT
)( ss Tρρ =

))(())(),((

)(

44
dxmAmdxmAm

dx

TTCTTzG

x

T
T

==

=

−+−=

=
∂
∂−

τα

λ

))(())(),((

)(

44
dymAmdymAm

dy

TTCTTzG

y

T
T

==

=

−+−=

=
∂
∂−

τα

λ

Figure 2: The solidus (1) and liquidus (2) at the 
casting speed 3.5m/min 

Figure 3: The solidus (1) and liquidus (2) at the 
casting speed 4.5m/min and the solidus (3) and 
liquidus (4) at the casting speed 2.5m/min (at the 
same cooling regime) 
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our attention on the phase-change boundary 
between mushy zone and solid metal below.  
Fig.4. show us how much the casting speed effects 
on the form of solidus phase-change boundary at the 
same secondary cooling regime. 

 
 
 
 
The liquidus position depending on 
secondary cooling mode 
Control parameters in the secondary cooling system 
are the discharges of cooling water in the various 
sections. One of the major challenges is to control 
the depth of the mushy zone position at a casting 
speed changes. Potential possibilities of such control 
are presented at the Fig.5. We can see that the 
possibility of the metallurgical length control by the 
secondary cooling under the changes in casting 
speed is rather limited. However, it should be noted 
that at more high casting speeds the final 
crystallization boundary form and depth adjustment 
available in a wider range. 

 
 
 
 
The effects of thermal characteristics on 
simulation results 
To mathematical model could be used in ACS CCM it 
is needed to guarantee a certain precision of the real 
process displaying. As already mentioned above, it is 
the tasks of identification systems theory. Since most 
uncertain may have thermal characteristics, it is 
necessary to establish the degree of influence of the 
errors of their determination of the simulation results. 
Experiments show the deviation liquid pool form 
when an error in the determination of the thermal 
conductivity of the cast metal component of 
approximately ± 10%. The depth of the liquid phase 
thus also varies in the range of about ± 9%. 
Analysing the nature of entering into the heat 
equation other thermophysical properties (density 
and specific heat), we can conclude that the error in 

their definition will affect the calculations in a similar 
manner. 
Studies of the effect of temperature changes in 
coming melt were also carried out. Calculations 
showed that the temperature deviation metal poured 
into the mold, within ±10°C is negligible effect on the 
depth and shape of the liquid phase. 
 
Conclusion 
The mathematical model of temperature field of 
continuous ingot is developed. The numerical 
experiments with different casting parameters were 
held. The dynamics of mushy zone under various 
control actions and disturbances is studied. The 
results of calculations of the influence of variations of 
the casting speed, secondary cooling water 
discharge and thermal parameters on the depth and 
shape of the liquid pool are presented. The 
simulation results show the limit of the possibility of 
controlling the liquid phase depth at a casting speed 
changes by secondary cooling. 
 
Abbreviations 

ACS  

CCM Continuous casting machine 

SCZ Secondary cooling zone 
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Figure 4: The solidus for 2.5m/min (1), 3.0m/min (2), 
3.5m/min (3), 4.0m/min (4), and 4.5m/min (5) at the 
same secondary cooling regime. 

Figure 5: The solidus at the secondary regime 
variations from min to max for casting speed 2.5m/min 
(1), and 4.5m/min (2) 


